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SUMMARY

Specialized somatosensory neurons detect temper-
atures ranging from pleasantly cool or warm to
burning hot and painful (nociceptive). The precise
temperature ranges sensed by thermally sensitive
neurons is determined by tissue-specific expression
of ion channels of the transient receptor potential
(TRP) family.Weshowhere that inDrosophila, TRPA1
is required for the sensing of nociceptive heat. We
identify two previously unidentified protein isoforms
of dTRPA1, named dTRPA1-C and dTRPA1-D, that
explain this requirement. A dTRPA1-C/D reporter
was exclusively expressed in nociceptors, and
dTRPA1-C rescued thermal nociception phenotypes
when restored to mutant nociceptors. However,
surprisingly, we find that dTRPA1-C is not a direct
heat sensor. Alternative splicing generates at least
four isoforms of dTRPA1. Our analysis of these
isoforms reveals a 37-amino-acid-long intracellular
region (encoded by a single exon) that is critical for
dTRPA1 temperature responses. The identification
of these amino acids opens the door to a biophysical
understanding of a molecular thermosensor.

INTRODUCTION

Nociception is the sensorineural process of encoding noxious

stimuli. The ability to sense and avoid potential or actual

tissue-damaging stimuli, such as noxious temperature, mechan-

ical stimuli, and irritant chemicals, is critical for survival. Transient

receptor potential (TRP) channels have been shown to play an

important role in a variety of sensory systems. Several members

of this family have been shown to be involved in nociception

(Bautista et al., 2006; Caterina et al., 2000; Kwan et al., 2006).

In mammals, TRPA1 has been implicated as a key player in

nociception. The recent identification of a mutation in TRPA1
that is associated with a heritable familial episodic pain

syndrome (FEPS) in a Colombian family represents the first

human pain-related syndrome to be linked to the TRP gene

superfamily (Kremeyer et al., 2010; Waxman, 2010). In mice,

TRPA1 is detected in a subset of TRPV1-expressing dorsal

root ganglion (DRG) C fibers and Ad fibers, which are the noci-

ceptive afferents. TRPA1 has been found to be required for

chemical, mechanical, and noxious cold nociception, although

the latter remains controversial (Bautista et al., 2006; Brierley

et al., 2011; Jordt et al., 2004; Kwan et al., 2006; Story et al.,

2003).The TRPA1 channel is activated by many irritant chemi-

cals, such as cinnamaldehyde, allyl isothiocyanate (AITC)

(mustard oil), allicin (garlic), and acrolein (tear gas) (Bautista

et al., 2006; Bautista et al., 2005). Many of these chemicals are

reactive electrophiles that are thought to activate TRPA1 through

covalent modification of cysteines (Bautista et al., 2006;

Macpherson et al., 2007). Indeed, TRPA1 knockout mice show

profound defects in avoiding these normally noxious com-

pounds (Bautista et al., 2006; Kwan et al., 2006).

Two recent studies have now shown that Drosophila TrpA1

(dTrpA1) is required for thermal nociception (Babcock et al.,

2011; Neely et al., 2011) in both larvae and in adult flies. The find-

ings of these studies are surprising because the temperature

threshold of the dTRPA1 thermoTRP channel (27�C) does not

match the temperature threshold for baseline nociception

(39�C). In addition, dTrpA1 reporters are not expressed in noci-

ceptive neurons, which leaves the site of action for dTrpA1 in

nociception pathways unclear.

Here, using a newly isolated null mutant allele of dTrpA1, we

further demonstrate that dTrpA1 indeed plays a role in thermal

and mechanical nociception. We have identified transcripts

encoding previously unknown isoforms of dTRPA1 (named

dTRPA1-C and dTRPA1-D) that have biophysical properties

distinct from the canonical dTRPA1-A isoform. A transgenic

reporter for dTrpA1-C and dTrpA1-D is specifically expressed

in the nociceptors of Drosophila larvae. Expression of the

dTRPA1-C isoform in heterologous cells suggests that it is not

a direct temperature sensor at temperatures as high as 42�C,
but it does respond to isothiocyanate compounds. Nevertheless,
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Figure 1. dTrpA1 Is Required for Thermal and Mechanical Nociception

(A) Schematic diagram of dTRPA1 protein. Green circles indicate ankyrin repeats, while blue ovals indicate transmembrane helices. Asterisk indicates location of

the premature stop codon in dTrpA1W903*.

(B–F) The distribution of NEL latency for wandering third-instar larvae stimulated with a 46�C probe. (B) The distribution of thermal nociception responses of wild-

type Canton S larvae (4 trials, n = 115). (C) The distribution of thermal nociception responses of dTrpA1W903*/+ larvae (3 trials, n = 80) resembled wild-type Canton

S (Wilcoxon rank-sum test with Bonferroni correction, p > 0.9). (D) The latencies for thermal nociception responses of Df(3L)ED4415/+ larvae (3 trials, n = 54) are

slightly delayed in comparison to wild-type (Wilcoxon rank-sum test with Bonferroni correction, p < 0.01). (E) dTrpA1W903*mutant larvae (4 trials, n = 149) showed

severely delayed nociception responses in comparison to control strains Canton S and dTrpA1W903*/+ (Wilcoxon rank-sum test with Bonferroni correction, p <

0.0001). (F)dTrpA1W903*/Df(3L)ED4415 larvae (3 trials, n = 67) showed delayedNEL in comparison to control strainsCanonS,dTrpA1W903*/+ andDf(3L)ED4415/+,

indicating that Df(3L)ED4415 failed to complement the NEL defects of dTrpA1W903* (Wilcoxon rank-sum test with Bonferroni correction, p < 0.0001).

(G) dTrpA1 is required for mechanical nociception. A significantly reduced proportion of dTrpA1W903* [3 trials, n = 97, Pearson’s chi-square test for independence

with Bonferroni correction, p < 0.001(***) in comparison to Canton S or dTrpA1W903*/+] and dTrpA1W903*/Df(3L)ED4415 [3 trials, n = 80 Pearson’s chi-square test
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expression of dTrpA1-C in nociceptors rescued thermal noci-

ception phenotypes of dTrpA1 mutants. Our results suggest

a role for dTRPA1 in thermal nociception that does not depend

on thermosensitivity. Furthermore, analysis of the four existing

dTRPA1 isoforms reveals 37 intracellular amino acids (between

the last ankryin repeat and membrane-spanning segment S1)

as playing a critical role temperature sensing. Sequences at

the absolute N terminus also affect temperature responses.

The identification of these heat-responsive elements, which we

term TRP Ankyrin Caps (TACs), will enable a biophysical under-

standing of heat sensing by TRPA1 channels.

RESULTS AND DISCUSSION

Identification of a Chemically Induced dTrpA1 Null
Mutant Allele
We performed a screen for ethyl methanesulfonate (EMS)-

induced mutations of the dTrpA1 locus through the Drosophila

Tilling Project (Cooper et al., 2008). One line stoodout as a poten-

tial null loss-of-function allele of dTrpA1. As in all TRP channels,

dTRPA1 is predicted to have six transmembrane domains, with

a pore loop between the fifth and sixth transmembrane domain.

In the EMS-induced mutant allele dTrpA1W903*, a guanosine is

mutated to an adenosine (Figure S1 available online), changing

the codon for Tryptophan 903 to a premature amber stop codon.

As this residue was located upstream of the pore loop, the

premature stop codon located in the fourth transmembrane

domain of dTrpA1 was predicted to lead to nonsense-mediated

decay or the production of a nonfunctional dTRPA1 channel from

all possible dTRPA1 transcripts (Figure 1A). In addition, Df(3L)

ED4415, a genomic deletion (deficiency) removing 210 kb that

included dTrpA1 (as well as 25 other genes), was available for

our studies. As expected for a large deficiency, Df(3L)ED4415

is not homozygous viable. In order to separate the dTrpA1W903*

mutation from other unlinked EMS-inducedmutations that might

be present in the mutagenized strain, we outcrossed the

dTrpA1W903* mutant chromosome to the Df(3L)ED4415 strain

for six generations.

dTrpA1 Mutants Are Defective for Both Thermal
and Mechanical Nociception
We found that the outcrossed dTrpA1W903* mutant animals

showedpronounceddefects inbehavioral assays for nociception.

Drosophila larvae produce stereotyped nocifensive escape

locomotion (NEL) behavior in response to noxious thermal or

mechanical stimuli (Hwang et al., 2007; Wheeler et al., 2002;

Zhong et al., 2010). Wild-type animals gently touched with

a 46�C probe initiate NEL behavior within 3 sec (Figure 1B)

(Babcock et al., 2009; Hwang et al., 2007; Tracey et al., 2003). In

contrast, we observed that dTrpA1W903*mutant larvae displayed
for independence with Bonferroni correction, p < 0.001(***) in comparison to Can

30 mN Von Frey fibers relative to wild-type Canton S larvae (5 trials, n = 120), dT

(3 trials, n = 67) animals.

(H) The average summed gentle touch response scores of wild-typeCanton S (n =

(n = 21) were not significantly different (single-factor ANOVA, p = 0.13).

In (B–H), error bars indicate the SEM.
a significantly delayed response. Many of the mutants failed to

initiate the escape behavior within 10 sec (Figure 1E). The hetero-

zygous dTrpA1W903*/+ larvae showed normal responses to

noxious heat, and Df(3L)ED4415/+ larvae had only mild defects

(Figures 1C and 1D), indicating a recessive mutant phenotype

(Figure 1C). The mutant phenotype mapped to the dTrpA1 locus,

as Df(3L)ED4415 failed to complement dTrpA1W903* (Figure 1F).

We also tested the dTrpA1 mutants for mechanical nocicep-

tion responses (Figure 1G). Compared to wild-type and hetero-

zygous controls, which produced robust nocifensive responses

to stimulation with a 30 mN von Frey fiber, both the dTrpA1W903*

and dTrpA1W903*/Df(3L)ED4415 larvae were significantly less

responsive (Figure 1G). This decreased response was specific

to mechanical nociception, as dTrpA1 mutant larvae showed

normal responses to gentle touch (Figure 1H). In addition, gross

motor functions of dTrpA1 mutants appeared normal (data not

shown) (Rosenzweig et al., 2005).

A 21 kb piece of genomic DNA that included the entire dTrpA1

locus (and the neighboring gene,mcm7) completely rescued the

dTrpA1 thermal and mechanical nociception defects (Figures 2A

and 2E). This further narrowed the genetic aberration causing the

nociception defects of the mutant down to one of two genes,

dTrpA1 and mcm7.

RNAi Knockdown of dTrpA1 Expression inmdIV Neurons
Phenocopies the Mutant
The class IVmultidendritic (mdIV) neurons function as polymodal

nociceptors in Drosophila larvae (Hwang et al., 2007). These

neurons are known to respond in extracellular recordings to

AITC in a dTRPA1-dependent manner(Xiang et al., 2010). Yet,

previously existing dTrpA1 reporters are not expressed in these

cells (Hamada et al., 2008; Rosenzweig et al., 2005) (W.D.T. and

L.Z., unpublished data). Thus, to test whether dTrpA1 was

required in the nociceptors for mechanical and thermal nocicep-

tion, we used the nociceptors-specific pickpocket1.9-GAL4

(ppk-GAL4) driver to express UAS-dTrpA1-RNAi and UAS-

dicer2 (Hwang et al., 2007). The ppk-GAL4/+;UAS-dTrpA1RNAi/

UAS-dicer2 larvae showed reduced responses to both noxious

thermal and mechanical stimuli (Figures 2D and 2F). Although

RNAi mutant phenotypes were less severe than those of the

genetic null mutant, these results support the involvement of

dTRPA1 in nociception and further suggest that the site of action

for dTrpA1 is in the nociceptors themselves.

Properties of the Known Isoforms of dTrpA1 Are Not
Consistent with a Function in Nociception
The heat activation threshold of the known heat-sensing

dTRPA1-A ion channel is between 24�C and 29�C (Viswanath

et al., 2003). In contrast, both the behavioral threshold for larval

nociception and the activation threshold of themdIV neurons are
ton S and Df(3L)ED4415/+ or dTrpA1W903*/+] larvae showed NEL responses to

rpA1W903*/+ heterozygous (3 trials, n = 63), and Df(3L)ED4415/+ heterozygous

28) and dTrpA1mutants dTRPA1W903* (n = 16) and dTRPA1W903*/Df(3L)ED4415
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Figure 2. Genomic Rescue of dTrpA1 and Nociceptor-Specific RNAi Knockdown of dTrpA1

(A) In the thermal nociception assay, the dTrpA1-BAC/+; dTrpA1W903*/Df(3L)ED4415 larvae (3 trials, n = 143) showed rescued nocifensive behavior resembling

the wild-type, while dTrpA1W903*/Df(3L)ED4415mutants tested side by side still showed delayed responses (3 trials, n = 180) (Wilcoxon rank-sum test, p < 0.01).

(B–D) The nociception responses of larvae with dTrpA1RNAi knockdown in mdIV neurons (ppk-GAL4/+; UAS-dicer2/UAS-dTrpA1RNAi, 3 trials, n = 112) are

significantly delayed in comparison to the control groups (ppk-GAL4/+; UAS-dicer2/+, 3 trials, n = 113; UAS-dTrpA1RNAi/+, 3 trials, n = 49) (Wilcoxon rank-sum

test with Bonferroni correction, p < 0.0001).

(E) In the mechanical nociception assay, dTrpA1-BAC/+; dTrpA1W903*/Df(3L)ED4415 larvae (3 trials, n = 139) showed rescued nociception responses upon

stimulation with a 30 mN mechanical force relative to dTrpA1W903*/Df(3L)ED4415 mutants [3 trials, n = 111, Pearson’s chi-square test for independence with

Bonferroni correction, p < 0.001(***)].

(F) Nociceptor-specific knockdown in dTrpA1RNAi larvae (ppk-GAL4/+; UAS-dicer2/UAS-dTrpA1RNAi, n = 124) showed reduced mechanical nociception

responses to a 30mNmechanical force in comparison to control strains that had driver alone (ppk-GAL4/+;UAS-dicer2/+, n = 110) or toUAS-dTrpA1without the

driver (UAS-dTrpA1RNAi/+, n = 84) [Pearson’s chi-square test for independencewith Bonferroni correction, p < 0.01(**) in comparison toUAS-dTrpA1RNAi/+, p <

0.05(*) in comparison to ppk-GAL4/+; UAS-dicer2/+].

Error bars indicate the SEM.
approximately 39�C (Tracey et al., 2003; Xiang et al., 2010). Thus,

although our behavioral results, as well as the recent results of

others (Babcock et al., 2011), suggested a site of action for

dTrpA1 in nociceptors, the known biophysical properties of

dTRPA1-A seemed inconsistent with this possibility.

If dTRPA1-Awas expressed in nociceptors, then the predicted

behavioral threshold for nociception would be 29�C. Indeed,
46 Cell Reports 1, 43–55, January 26, 2012 ª2012 The Authors
consistent with this prediction, larvae with forced expression of

the dTrpA1-A isoform in the nociceptor neurons (ppk-GAL4/+;

UAS-dTrpA1-A/+) had a dramatically lowered thermal nocicep-

tion threshold. Greater than ninety percent of these larvae

responded to a 30�C heat stimulus with NEL in less than 1 sec

(Figure 3). This was in dramatic contrast to the behavior of

wild-type larvae and other control genotypes, which never
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Figure 3. Expression of dTRPA1-A, but not dTRPA1-C, in mdIV

Neurons Lowers the Thermal Nociception Threshold

Wild-type Canton S larvae (n = 86), UAS-dTrpA1-A/+ larvae (n = 54),

ppk-GAL4/+ larvae (n = 37), UAS-dTRPA1-C/+ larvae (n = 30), and ppk-

GAL4/UAS-dTRPA1-C larvae (n = 30) did not show nocifensive responses

to 30�C stimuli within 10 sec. However, ppk-GAL4/UAS-dTrpA1-A

larvae (n = 28) showed robust nocifensive responses to 30�C stimuli,

with most of the larvae responding within 1 sec (Wilcoxon rank-sum

test with Bonferroni correction, p < 0.0001 in comparison to all other

groups).
produced NEL in response to 30�C heat (Figure 3). The behavior

of larvae expressing dTRPA1-A in nociceptors causes thermal

allodynia that is even more severe, and with a lower threshold

(<30�C), than that which is seen following exposure of larvae to

tissue-damaging UV-C radiation (which causes a behavioral

thermal nociception threshold of 34�C [Babcock et al., 2009]).

Several important conclusions can be drawn from these

results. First, the results further confirmed that mdIV neurons

are indeed nociceptors, since expression of dTrpA1-A in mdIV

neurons altered the thermal threshold of NEL behavior in an

intuitively predictable manner. Second, the results argued

against a role for dTRPA1-A in mediating baseline nociception

in the mdIV neurons. This is in apparent conflict with the results

of dTrpA1 mutant behavior, genomic rescue, and RNAi knock-

down experiments, which strongly suggest that dTrpA1 is

required in mdIV neurons for nociception. Furthermore, since

existing dTrpA1 reporters are not expressed in mdIV neurons,

another known isoform of dTrpA1 (dTrpA1-B; Figure 4B), which

shares a transcription start site with dTrpA1-A (Kwon et al.,

2010), could not explain the requirement for dTRPA1 in nocicep-

tion behaviors.

Cloning of dTrpA1 Isoforms
A potential explanation for these findings was found when we

examined the genomic region surrounding the dTrpA1 locus

and identified two highly conserved putative exons that were

located upstream of the known transcriptional start site for

dTrpA1-A and dTrpA1-B. These exons were historically anno-

tated as part of the misfire (mfr) gene (W.D.T. and L.Z., unpub-

lished data), and this may have caused them to be unnoticed

in earlier studies. Current annotations predict that these exons

may be part of the dTrpA1 locus and spliced into the first exon

of dTrpA1-A/B. To test the possibility that these newly identified

exons were indeed part of the dTRPA1 locus, we performed

RT-PCR. We successfully amplified, cloned, and sequenced

PCR products from these reactions, identifying two previously

unidentified dTrpA1 transcripts (Figures S2A and S2B). To distin-

guish these transcripts from the known transcripts of dTrpA1

(dTrpA1-A and dTrpA1-B) (Figures 4A and 4B), we refer to these

transcripts as dTrpA1-C and dTrpA1-D (Figures 4C and 4D).

These transcripts are distinct from the dTrpA1-A and

dTrpA1-B transcripts. They are also distinct from other dTrpA1

transcripts that have been predicted to exist by FlyBase, the

Drosophila genome project (http://flybase.org/cgi-bin/gbrowse/
dmel/?Search=1;name=FBgn0035934), because they do not

include the third exon of the annotated dTrpA1 locus (Figures

4A–4D). The DNA sequence of plasmid clones of dTrpA1-C and

dTrpA1-D confirmed the incorporation of the two upstream

exons into dTrpA1 transcriptional start and splice variants. Alter-

native splicing of dTrpA1-C and dTrpA1-D results in skipping of

the initial exon (the third exon of the locus) that is used in

dTrpA1-A/B transcripts (Figures 4C and 4D). In contrast to the

genome annotation, direct sequencing of PCR products used

in cloning experiments indicated that the third exon of the

locus was not spliced into the first or second exons at detectable

levels (data not shown).

In addition, two alternatively spliced downstream exons exist

in the four transcripts. The 12th exon of dTrpA1 is shared in

the dTrpA1-A and dTrpA1-D transcripts (Figures 4A and 4D),

and the 13th exon of the locus is shared between dTrpA1-B

and dTrpA1-C (Figures 4B and 4C).

Four distinct proteins are predicted from these transcripts. At

the dTRPA1-C/D N-termini, 97 amino acids are encoded by

exons 1 and 2, and these amino acids do not share sequence

similarity with the first 62 amino acids that are encoded by the

first exon of dTrpA1-A/B (Figure S2C). In addition, the alterna-

tively spliced 13th exon that is shared between dTrpA1-B and

dTrpA1-C encodes 36 amino acids that are not easily aligned

with 37 amino acids that are encoded by the shared exon 12

of dTrpA1-A and dTrpA1-D (Figure S2D). It is important to note

that the amino acid variants of the protein do not change ankyrin

repeats per se. Rather, the alternate amino acids flank the

ankyrin repeats at the very N terminus and immediately following

the last ankyrin repeat (Figures 4C and 4D).

Nociceptive Neurons Express dTRPA1-C and Require
It for Nociception
As noted above, existing GAL4 reporter strains for dTrpA1-A/B

(Hamada et al., 2008; Rosenzweig et al., 2005; Tian et al.,

2009) are not expressed in the mdIV nociceptive neurons

(W.D.T. and L.Z., unpublished data). However, these reporters

were made through the utilization of genomic DNA from regions

largely downstream of the transcriptional start site of dTrpA1-

C/D, and it is thus likely that they lack important upstream

enhancer elements for dTrpA1-C/D (Figure 4B). Therefore, to

investigate the expression pattern of dTrpA1-C/D, we cloned

the 2.1 kb genomic interval between the transcriptional start

site of dTrpA1-C/D and the 30 end ofmisfire into a GAL4 reporter
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Figure 4. Gene and Protein Structures of Four Isoforms of dTrpA1 and the dTrpA1-C/D Expression Pattern

(A) Gene and protein structures of the canonical warmth-activated dTrpA1-A isoform. The dTRPA1-A first exon and alternatively spliced 12th exon are labeled in

red. The blue bar located above the gene illustrates the region of DNA sequence used for making a previously described dTrpA1-A-GAL4 reporter (Hamada et al.,

2008). The dTRPA1-A protein is predicted to have six transmembrane domains with 13 ankyrin repeats at the N terminus (Viswanath et al., 2003). The regions

marked in red on the protein schematic are encoded by the red-labeled exons in the gene structure diagram.

(B) Gene and protein structures of the dTrpA1-B isoform. The dTrpA1-B isoform uses the first exon of dTrpA1-A (red) and is alternatively spliced to include the

13th exon (black). The red- and black-labeled regions flanking the ankyrin repeats in the protein schematic are encoded by the red exon 3 and black exon 13 in the

gene structure diagram.

(C) Isoform dTRPA1-C, which uses a newly identified start site to include two 50 exons marked in black (exons 1 and 2) and is alternatively spliced to include

the 13th exon (black). The blue bar below the gene illustrates the intergenic region between the neighboring genemfr and the dTrpA1-C isoform used for making

the dTrpA1-C/D-GAL4 reporter. The black-labeled regions flanking the ankyrin repeats in the protein schematic are encoded by the black exons in the gene

structure diagram.

(D) Gene and protein structures of the dTrpA1-D isoform. The dTrpA1-D isoform uses the exons 1 and 2 (black) and is alternatively spliced to include the 12th exon

(red). The red- and black-labeled regions flanking the ankyrin repeats in the protein schematic are encoded by the black exons 1 and 2 and red exon 12 in the gene

structure diagram.

(E) dTrpA1-C/D-GAL4 showed specific expression in larval mdIV neurons. The image is a maximum-intensity projection of a dorsal mdIV neuron (ddaC) (dTrpA1-

C/D-GAL4;UAS-mCD8GFP, third instar).
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Figure 5. mdIV-Specific Expression of dTRPA1-C Rescues Thermal

Nociception Defects of dTrpA1 Mutants

(A) Expression of dTrpA1-C specifically in mdIV neurons in dTrpA1

mutant background (ppk-GAL4/UAS-dTrpA1-C; dTrpA1W903*/Df(3L)ED4415)

restored thermal nociception behavior (3 trials, n = 82) (Wilcoxon rank-sum test

with Bonferroni correction, p < 0.0001 in comparison to B and C).

(B) The control, the UAS-dTrpA1-C transgene, in the absence of a driver in the

mutant background (UAS-dTRPA1-C/+; dTrpA1W903*/Df(3L)ED4415), showed

the delayed responses to a 46�C stimulus that was typical of the mutant

(2 trials, n = 51).

(C) The control, ppk-GAL4 driver alone, in the mutant background (ppk-

GAL4/+; dTrpA1W903*/Df(3L)ED4415), showed the delayed responses to

a 46�C stimulus that was typical of the mutant (3 trials, n = 83).

Error bars indicate the SEM.
transformation vector and generated transgenic GAL4 reporter

fly strains (Figure 4B). Remarkably, dTrpA1C/D-GAL4 driving ex-

pression ofUAS-mCD8GFP showed nearly exclusivemCD8GFP

expression in the larval mdIV nociceptors and their central

projections (Figures 4E, 4F, and 4G). This expression pattern

led us to further hypothesize that either dTRPA1-C or dTRPA1-D

might be the functional isoform of the mdIV nociceptors. Since

the apparent activation temperature of a heterologously ex-

pressed dTRPA1-D isoform (34�C; see below) did not match

the baseline thermal nociception threshold of larval nociceptors

(39�C), we focused on the possibility that dTRPA1-C was

involved in thermal nociception.

In order to directly test the hypothesis that dTRPA1-C was the

isoform required for nociception, we generated UAS-dTrpA1-C

transgenic flies and performed tissue-specific rescue experi-

ments. Driving expression of UAS-dTrpA1-C specifically in the

nociceptors (under control of ppk-GAL4) rescued the thermal

nociception phenotypes of dTrpA1W903*/Df(3L)ED4415 mutant

animals (Figure 5). In addition, in contrast to UAS-dTrpA1-A,

expression of UAS-dTrpA1-C did not lower the behavioral

threshold for thermal nociception (Figure 3). Combined, these

results demonstrate that dTRPA1-C is the important dTRPA1

isoform for Drosophila thermal nociception and that it is required

in nociceptors. Furthermore, these results constitute formal

genetic proof that the mutation in dTrpA1 is responsible for the

noxious heat-insensitive phenotype in the dTrpA1W903* mutant

strain.

Interestingly, although the dTrpA1 genomic transgene did

completely rescue mechanical nociception phenotypes (Fig-

ure 2E), dTRPA1-C was not sufficient to rescue mechanical

nociception of dTrpA1 mutants when restored to mdIV neurons

(L.Z. andW.D.T., unpublished data). This suggests that a specific

complement of dTRPA1 isoforms is needed for mechanical

nociception. It is possible that dTRPA1-D could be needed for

mechanical nociception, or an as-yet-unidentified isoform could

be involved.

TAC Elements Confer Distinct Temperature-Sensing
Properties to dTRPA1 Isoforms
The observation that expression of dTRPA1-A or dTRPA1-C in

the mdIV neurons conferred distinct temperature thresholds for

the induction of NEL suggested that these two isoforms might

have differing biophysical properties. These functional differ-

ences may be determined by the amino acids encoded by the

alternatively spliced exons. The N-terminal region of dTRPA1

contains a relatively long string of ankyrin repeats that play an

unknown role in determining the functional properties of the

channel. The alternate amino acids of dTRPA1-A, dTRPA1-B,

dTRPA1-C, and dTRPA1-D encode amino acids that flank these

repeats (Figures 4A–4D). As mentioned above, we term these

amino acid sequences TACs in order to distinguish the iso-

form-specific sequences from other regions of the dTRPA1

protein (Figures 4C and 4D).
(F) CNS expression pattern of dTrpA1-C/D-GAL4;UAS-mCD8GFP (third instar).

expression of dTRPA1-C/D-GAL4 was also seen in multidendritic bipolar (md-bp)

gland expression were also observed.

(G) Merged image of brain expression of dTrpA1-C/D-GAL4;UAS-mCD8GFP wit
To test how the biophysical properties of the isoforms identi-

fied here differ from each other, we developed a heterologous

expression system. We expressed each isoform, along with

the genetically encoded calcium indicator GCaMP3.0 (GCaMP)

(Tian et al., 2009), in the Drosophila S2R+ cell line (Yanagawa

et al., 1998). We chose to use the Drosophila S2R+ cells for

our experiments because the lipid content of the plasma
Expression is specific to the projections of mdIV neurons. In the body wall,

neurons. Bipolar neuron projections from anterior segments and potential ring

h brightfield CNS.
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Figure 6. The dTRPA1-C Isoform Is Not Activated by Temperature in Heterologous Expression System but Does Respond to AITC

Heat-induced calcium transients are observed in S2R+ cells transfected with UAS-dTrpA1-A, but not in S2R+ cells transfected with UAS-dTrpA1-C. Scale bars

represent 10 mm.

(A and B) Images of representative S2R+ cells transfected with dTrpA1-A and the genetically encoded calcium indicator GCaMP3.0, displaying increased

GCaMP fluorescence at an elevated temperature (38�C) in comparison to room temperature (21�C).
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membrane of insect cells is distinct from that of vertebrate cells

and we wished to examine the channels in an environment that

would closely resemble the situation in vivo. The use of GCaMP

in our experiments allowed us to specifically investigate Ca2+

responses of transfected cells. This was important because

the transfection efficiency of S2R+ cells was relatively low.

Consistent with previous experiments showing that dTRPA1-A

is a warmth-activated channel, we observed a dramatic temper-

ature induced increases of GCaMP fluorescence in S2R+ cells

transfected with dTRP1-A (Figures 6A–6C, 6H, and 6I). The

majority of cells expressing dTRPA1-A displayed GCaMP fluo-

rescence increases of 50% or greater during the heat ramp,

with an average increase of 122% (Figures 6H and 6I). In

contrast, cells transfected with dTRPA1-C did not respond to

temperature increases up to 42�Cwith elevated GCaMP fluores-

cence (Figures 6D, 6E, and 6G–6I). The absence of a temperature

response in cells expressing dTRPA1-Cwas not due todTRPA1-C

being a nonfunctional channel, as a similar proportion of cells

expressing dTRPA1-A or dTRPA1-C responded to application

of the dTRPA1 agonist AITC (70% and 67%, respectively) with

a similar peak response (100% and 125% of baseline, respec-

tively) (Figures 6F–6I). Since the mammalian TRPA1 is activated

by cold with a threshold of 17�C, we also tested whether the

dTRPA1-C isoform would respond to noxious cold. Within the

cooling ramps of 22�C–15�C, no Ca2+ responses were detected,

suggesting that dTRPA1-C is not sensitive to cold (data not

shown).

In order to further validate the heat insensitivity of the dTRPA1-

C isoform revealed in Ca2+ imaging experiments, we performed

whole-cell patch-clamp recordings on the Drosophila S2R+ cells

expressing the channel. Cells were voltage clamped at �80 mV,

and whole-cell currents were monitored every 3 sec with

a 600 ms ramp from �80 to +80 mV. After stabilization of the

current at 24.3�C, the bath temperature was raised to 33�C
and then returned to 24.3�C. Cells were then treated with the

dTRPA1 agonist AITC. As shown in Figures 7A–7C, cells

expressing dTRP1A-A showed dramatic current increases at

elevated temperatures (33�C) and in response to the dTRPA1

agonist AITC. In contrast, cells expressing dTRPA1-C did not
(C) Representative traces from dTrpA1-A-transfected S2R+ cells showingGCaMP

trace represents an individual cell.

(D–F) Images of representative S2R+ cells transfected with UAS-dTrpA1-C an

increase GCaMP fluorescence at an elevated temperature (39�C) in comparison t

allyl isothiocyanate (AITC).

(G) Representative traces from dTrpA1-A-transfected S2R+ cells showing GC

application of 0.03 mM AITC (gray bar). Each colored trace represents an individ

(H) Percentage of S2R+ cells transfected with dTrpA1-A and GCaMP, dTrpA1-B a

that displayed a peak GCaMP DF/F0% of greater than 50% in response to incre

dTRPA1-A or dTRPA1-D responded to increased temperature and AITC. Cells e

increased temperature. Few GCaMP-only cells responded to increased tempe

Wilson’s estimate).

(I) Average peak DF/F0% of S2R+ cells transfected with dTrpA1-A and GCaMP

GCaMP alone in response to increased temperature (black bars) or 0.03mMAITC

was significantly greater than that of cells expressing dTRPA1-C or dTRPA1-B

expressing dTRPA1-B, dTRPA1-C, and dTRPA1-D each showed an average pe

response to heat (as determined by Student’s t test; double asterisks indicate p

(J) Average DF/ F0% of all data points within given temperature bins for cells trans

bars). Cells expressing dTRPA1-D showed significantly increased GCaMP fluores

24�C –26�C range (as determined by one-way ANOVA with Dunnett’s posttest; a
respond to temperature increases to 33�C, but did show the

expected robust currents upon application of AITC. At tempera-

tures greater than 33�C, the seal could not be maintained, and

this technical limitation prevented analysis of whole-cell currents

at the higher temperature ranges. Nevertheless, the absence

of temperature responses measured in Ca2+ imaging experi-

ments on dTRPA1-C-expressing cells indicates that the channel

does not show meaningful responses to temperature within

the measured range of 15�C –42�C. Combined, these results

demonstrate that the dTRPA1-C isoform has thermosensory

properties distinct from the canonical, warmth-activated

dTRPA1-A isoform and further suggest the possibility that

dTRPA1-C is not a temperature-sensitive TRP at all.

The surprising lack of a heat response in dTRPA1-C-express-

ing cells and the existence of the three other dTrpA1 splice

variants provided with us with an opportunity to investigate

the contributions of the distinct alternatively spliced domains in

heat responses. As with dTRPA1-C, we found that cells trans-

fected with dTRPA1-B lacked Ca2+ responses to temperature

in the 20�C–42�C temperature range (Figures 6H and 6I). Also,

as with dTRPA1-C, cells expressing dTRPA1-B still showed

Ca2+ responses to AITC, indicating that it was an active channel

(Figures 6H and 6I). In contrast, S2R+ cells transfected with the

dTRPA1-D isoform showed responses to both temperature

and AITC (Figures 6H and 6I). Interestingly, cells expressing

the dTRPA1-D isoform showed Ca2+ responses significantly

above baseline beginning at a temperature of 34�C (Figure 6J).

This temperature is significantly higher than the known tempera-

ture threshold of the dTRPA1-A isoform (27�C) but still lower than

the thermal nociception threshold of 39�C. Interestingly, this

34�C Ca2+ response of dTRPA1-D-transfected cells, matches

the thermal allodynia threshold of larvae exposed to UV-C radi-

ation(Babcock et al., 2009), making this isoform a good candi-

date for mediating allodynia responses.

These experiments reveal that the C-terminal TAC that is

shared between dTRPA1-A and dTRPA1-D, encoded by exon

12 of the locus, is essential for the heat responses of these iso-

forms (schematically represented in red on the protein structure

of dTRPA1-D [Figure 4D]). Conversely, the equivalent domain of
fluorescence (above) in response to a temperature ramp (below). Each colored

d the genetically encoded calcium indicator UAS-GCaMP3.0, displaying no

o room temperature (21�C), but a large increase in fluorescence in response to

aMP fluorescence (above) in response to a temperature ramp (below) and

ual cell.

nd GCaMP, dTRPA1-C andGCaMP, dTrpA1-D and GCaMP, orGCaMP alone

ased temperature (black bars) or 0.03 mM AITC (gray bars). Cells expressing

xpressing dTRPA1-B or dTRPA1-C responded to AITC, but few responded to

rature or AITC. Errors indicate 95% confidence intervals (as determined by

, dTrpA1-B and GCaMP, dTRPA1-C and GCaMP, dTrpA1-D and GCaMP, or

(gray bars). Cells expressing dTRPA1-A showed an average peakDF/ F0% that

(as determined by Student’s t test; single asterisks indicate p % 0.001). Cells

ak DF/F % in response to AITC that was significantly greater than the peak in

% 0.005). Errors bars indicate SE.

fected with dTrpA1-A and GCaMP (black bars) or dTrpA1-D and GCaMP (gray

cence at the 34�C–36�C and >36�C temperature range when compared to the

sterisk indicates p % 0.05). Error bars indicate SE.
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Figure 7. Patch-Clamp Recordings on

Drosophila S2R+ Show that the dTRPA1-C

Isoform Is Not Activated by Temperature

but Does Respond to AITC

(A) Diary plot of current amplitude at �80 mV from

an S2R+ cell transfected with dTrpA1-A (a) or

dTrpA1-C (b) during a temperature challenge and

after application of 0.03 mM AITC. Measured

temperature of the bath solution is shown in the

top panels. Note the absence of a response to

temperature increase for dTrpA1-C.

(B) Example current traces from an S2R+ cell

transfected with dTrpA1-A (a) or dTrpA1-C (b) in

response to a ramp protocol from �80 to +80 mV

at 24.3�C, at 33�C, and after application of AITC at

24.3�C, taken at the indicated times (see 1, 2, and

3) in (A).

(C) Summary data showing that dTrpA1-A, but

not dTrpA1-C, responded to temperature. Both

dTrpA1-A and dTrpA1-C responded to AITC. For

current amplitude, n = 15 for dTrpA1-A, n = 12 for

dTrpA1-C; *p < 10�6. For AITC application, n = 9

for dTrpA1-A, n = 12 for dTrpA1-C; *p > 0.05. For

mCD8::GFP only, n = 6 for temperature, n = 6 for

AITC application. Scale bars represent SE.
dTRPA1-B and dTRPA1-C interferes with heat responses. Inter-

estingly, the C-terminal TAC of the heat-insensitive dTRPA1-B

and dTRPA1-C shows higher sequence similarity with vertebrate

TRPA channels (Figure S2D) relative to the heat-sensitive TAC of

dTRPA1-A and dTRPA1-D. Future analyses will allow precise

investigation into which of the amino acids that vary between

the C-terminal TACs are critical for temperature-mediated gating

of these channels.

While the molecular mechanisms of the extreme temperature

sensitivity of thermoTRP channels are still largely unknown,

some progress has been made. C-terminal truncations of
52 Cell Reports 1, 43–55, January 26, 2012 ª2012 The Authors
TRPV1 change the functional properties

of this channel (Vlachová et al., 2003),

and swapping the C terminus of heat-

sensitive TRPV1 with that of cold-sensi-

tive TRPM8 exchanges the temperature

responses of the channels. Interestingly,

the C terminus is not essential for TRPV1

capsaicin responsiveness or TRPM8

menthol responsiveness (Vlachová et al.,

2003).

More recently, the pore region of TRPV

channels has been suggested to be crit-

ical for temperature activation. Residues

in the sixth transmembrane and pore

region of TRPV3 are required for its heat

activation (Grandl et al., 2008). Consis-

tent with this, mutations in the outer

pore region of TRPV1 also specifically

impair temperature activation (Grandl

et al., 2010).

The N terminus of the rattlesnake

TRPA1 channel has been found to
contain elements important for heat sensitivity(Cordero-Morales

et al., 2011). Artificially constructed chimeric proteins between

rattlesnake TRPA1, and human TRPA1, showed that the heat-

sensitive properties of the rattlesnake channel could be

transferred to the heat-insensitive human channel. The heat-

responsive elements of the rattlesnake channel appear to lie

within the ankyrin-repeat-containing region of the protein.

Importantly, two separable elements of the rattlesnake ankyrin

repeat domain were found to contribute to the temperature-

response properties of the artificially constructed chimeric

proteins. Artificial chimeric channels made between hTRPA1



and dTRPA1 suggested that amino acids 400–612 of dTRPA1-A

could confer heat sensitivity to hTRPA1 (Cordero-Morales et al.,

2011). This region is distinct from the 37 amino acids of dTRPA1-

A and dTRPA1-D that are required for heat sensitivity in the

naturally occurring dTRPA1 variants. An interesting possibility

is that the C-terminal TAC domain of dTRPA1-A and dTRPA1-D

interacts with ankyrin repeats in the context of the native

dTRPA1 channels.

dTRPA1-A is activated by a temperature range of 24�C–29�C,
while dTRPA1-B and dTRPA1-C did not respond to temperature

changes within the range of 15�C–42�C. This indicates that crit-

ical sequences important for heat activation reside in the 37

amino acid residues that are unique to the TRPA1-A isoform.

However, the N-terminal TAC of dTRPA1-A must also contribute

to temperature responses, because when this segment was

replaced with the N-terminal TAC of the D isoform, the threshold

of the temperature response was increased to approximately

34�C.
Our results indicate that no single domain of the dTRPA1

channel can completely explain its thermal-response properties.

Complex allosteric interactions between the N-terminal TACs

and C-terminal TAC are likely to play a role. These interactions

are likely to depend on the context of intervening ankyrin

repeats. Future detailed structural analyses of the four TRPA1

variants that we describe here will allow for the unraveling of

these mechanisms.

EXPERIMENTAL PROCEDURES

Fly Strains and Husbandry

The following fly strains were used: w; ppk-GAL4, w; UAS-dTrpA1-A,

iso w1118; UAS-dTrpA1RNAi (VDRC GD collection transformant ID 37249),

w; Df(3L)ED4415/TM6b, w; dTrpA1W903*/TM6b, w;UAS-mCD8::GFP, UAS-

dicer2, and UAS-ChannelRhodopsin-2::eYFP line C (UAS-ChR2::eYFPlineC).

Drosophila stocks were raised on standard cornmeal molasses fly food

medium at 25�C.

Nociception Assays

The thermal nociception behavioral tests were performed as described previ-

ously (Caldwell and Tracey, 2010; Hwang et al., 2007; Tracey et al., 2003;

Zhong et al., 2010). The mechanical nociception behavioral tests were

performed as described previously (Caldwell and Tracey, 2010; Hwang

et al., 2007; Tracey et al., 2003; Zhong et al., 2010).

Gentle Touch Assay

The gentle touch behavioral tests were performed as described previously

(Kernan et al., 1994; Zhong et al., 2010).

Confocal Microscopy

For the visualization of GAL4 expression patterns via confocal microscopy,

dTrpA1-C/D-GAL4;UAS-mCD8::GFP larvaewere anesthetizedwith ether until

immobilized and mounted in glycerol. Brains of third instar larvae were

dissected in PBS and fixed in 4% paraformaldehyde for 30 min prior to

imaging.

S2R+ Cell Culture, Calcium Imaging, and Electrophysiology

Drosophila S2R+ cell line was maintained in Schneider’s Drosophila medium

(Invitrogen) supplemented with 10% heat-inactivated fetal bovine serum. Cells

grown on coverslips (Warner Instruments, #1.5 glass coverslip, 25 mm round)

in 6-well tissue culture plates (Falcon) were transfected with Ubiquitin-GAL4

(0.75 mg DNA per well), UAS-GCaMP3.0 (0.5 mg DNA per well), and UAS-

dTrpA1-A, UAS-dTrpA1-B, UAS-dTrpA1-C, or UAS-dTrpA1-D (0.25 mg DNA
per well for each isoform) with the use of Cellfectin II Reagent (Invitrogen).

For electrophysiology experiments, UAS-mCD8::GFP (0.25 mg DNA per well)

was used in the transfection in place of UAS-GCamp3.0. Imaging was

conducted 72 hr after the transfection. Coverslips were assembled in an

imaging chamber (Warner Instruments, Series 20 Chamber Platform P-2)

and gently rinsed with HL3 saline (70 mM NaCl, 5 mM KCl, 1.5 mM CaCl2,

20 mM MgCl2, 10 mM NaHCO3, 5 mM trehalose, 115 mM sucrose, and

5 mM HEPES [pH 7.2]) (Stewart et al., 1994). An inline solution heater (Warner

Instruments, model SH-27B) was used to flow heated or cooled HL3 through

the chamber to deliver temperature ramps. A thermocouple (Warner Instru-

ments, TA-29) was connected to a data-acquisition board (Warner Instru-

ments, TC-324B) and placed in the imaging chamber to continuously monitor

the bath temperature. For each heat-response experiment, the bath tempera-

ture was increased from room temperature (<24�C) to 38�C–42�C and then

cooled back to room temperature. Microscopy was performed on a Zeiss

LSM 5 Live confocal system with a 20X Plan-Apochromat lens N/A 0.8 and

488 nm laser. Images were collected at 0.2–1 Hz during the temperature

ramp and AITC application. The data were analyzed with the Zeiss LSM soft-

ware physiology package. Individual cells were selected as regions of

interest. Baseline fluorescence for each cell was calculated by determining

the mean fluorescence of all time points prior to heat ramp or AITC application

(>30 sec). Peak fluorescence was determined for each cell at temperatures

elevated above 24�C (for the analyses of heat responses) or after AITC appli-

cation (for analyses of responses to AITC). DF/ F0% was calculated with the

formula 100% 3 (F-F0)/ F0 where F was the fluorescence intensity at each

time point and F0 was the average baseline fluorescence intensity before the

introduction of any manipulation. For each imaging experiment, nR 25 trans-

fected cells, except for the measurement of dTrpA1-A-transfected cells’

responses to AITC (n = 7) and the measurement of GCaMP-only cells’

responses to temperature (n = 6).

Whole-cell voltage clamp was performed on transfected S2R+ cells plated

on coverslips. Transfected cells selected for recordings were identified by

mCD8::GFP fluorescence. The intracellular solution contained (in mM) cesium

methanesulfonic acid 135, CsCl 5, EGTA 0.5, MgCl2 1, Mg-ATP 4, HEPES 10;

adjusted to pH 7.3 with CsOH. Extracellular solution contained (in mM) NaCl

135, KCl 5, CaCl2 2, HEPES 5, Glucose 10, adjusted to pH 7.3 with NaOH.

Patch pipette resistance ranged from 4 to 5.5 MU. Recordings were obtained

with the EPC 10 USB patch amplifier (HEKA Instruments), and data were

collected with Patchmaster (HEKA Instruments). The liquid junction potential

for these recordings was not corrected, and cells were discarded if series

resistance exceeded 10 MU. The recordings were obtained at room tempera-

ture (24.3�C) except during heat stimulation, as indicated in Figure 7. The

thermal stimulation was applied by increasing the recording chamber solu-

tion’s temperature with a preheated solution via an inline heater with the use

of a Temperature Controller (TC-324B, Warner Instruments), and temperature

was monitored with a thermocouple (TA-30, Warner Instruments) placed in

a recording chamber near the recorded cells. Data acquisition of thermistor

outputs (100 mV/�C) were collected simultaneously with heat-activated

current signals. Cells were held at�80mV, and currents were monitored every

3 sec in response to a linear ramp from�80mV to +80mV over 600 ms. A brief

5 mV hyperpolarizing step was performed at the end of each sweep to monitor

membrane resistance and assess the stability of the access resistance

throughout the experiment. For statistical analysis, the current amplitude

was normalized to each cell capacitance.

Molecular Cloning

For the generation of dTrpA1-C/D-GAL4, PCR was performed from a BAC

clone template with the forward primer 50-CACCCCATTCCACTTGAGTGAG-

GACTAC-30 and the reverse primer 50- GACCGCTGTAGACTCCGTTG-30.
The resulting PCR product was then cloned into pENTR/D-TOPO (Invitrogen)

and then into the Drosophila pCaSpeR-DEST6 Gateway destination vector

with the use of Clonase II enzyme (Invitrogen). This construct was used for

the generation of transgenic animals by the transposase-mediated transfor-

mation of w1118 flies. Expression patterns of two independent transformants

were analyzed by crossing to UAS-mCD8GFP and showed similar patterns.

For the cloning of dTrpA1-C, RT-PCR was performed from total RNA

extracted from a mixed population of first and second instar Canton S larvae.
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Oligo (dT)12-18 (Invitrogen) and primer 50-CTACATGCTCTTATTGAAGCTCAG

GGCG-30 mix were used as primers for reverse transcription, and first-strand

cDNA synthesis used SuperScriptTM II RT (Invitrogen). For amplification of

cDNA, PCR was performed with the use of the forward primer 50-ATGCCCA

AGCTCTACAACGGAGTCTA-30 and the reverse primer 50-CTACATGCTCTTA

TTGAAGCTCAGGGCG-30. The PCR product was then reamplified with the

same pair of primers. The dTrpA1-C PCR product was cloned into TOPO-XL

(Invitrogen) and fully sequenced. TOPO-XL-dTRPA1-C was further subcloned

into pUAST construct with the use of the EcoRI restriction site. For the cloning

of dTrpA1-D, the forward primer used was 50-CACCATGCCCAAGCTCTACA

ACGGAG-30 and the reverse primer used was 50-CTACATGCTCTTATTGAAG

CTCAGGG-30. The PCR parameters were as follows: 98�C for 30 sec, 98�C for

7 sec, 68�C for 30 sec, and 72�C for 2 min; steps 2–4 repeated 29 times (for

a total of 30 cycles), followed by 72�C for 8 min.

For construction of the pUAST-dTrpA1-B plasmid, a NheI/XbaI fragment

containing the 30 end of the dTrpA1-C cDNA and sequence encoding the

C-terminal TAC region was excised from the pUAST-dTrpA1-C plasmid and

ligated with T4 DNA ligase (New England Biolabs) into the a pUAST-dTrpA1-A

plasmid cut with NheI/XbaI. For construction of the pUAST-dTrpA1-D plasmid,

a NheI/XbaI fragment containing the 30 end of the dTrpA1-A cDNA and

sequence encoding the C-terminal TAC region was excised from the

pUAST-dTrpA1-A plasmid and ligated with T4 DNA ligase (New England

Biolabs) into the a pUAST-dTrpA1-C plasmid cut with NheI/XbaI.

Transgenic Flies

The pCaSpeR-DEST6-dTrpA1-C/D-GAL4 construct was injected by the Duke

UniversityModel SystemGenomics core facility for P-element-mediated trans-

formation. This particular line used in this research is an insertion on the second

chromosome. Injections for dTrpA1BAC (CH322-154N09) were performed by

GenetiVision via PhiC31-mediated chromosome integration with VK37(2L)

22A3as thedockingsite (Venkenet al., 2006). ThepUAST-dTRPA1-Cconstruct

was injected by GenetiVision for P-element-mediated transformation.

ACCESSION NUMBERS

The GenBank accession numbers for dTrpA1-C and dTrpA1-D are JN400354
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